Predicting the growth situation of Pseudomonas aeruginosa on agar plates and meat stuffs using gas sensors

نویسندگان

  • Xinzhe Gu
  • Ye Sun
  • Kang Tu
  • Qingli Dong
  • Leiqing Pan
چکیده

A rapid method of predicting the growing situation of Pseudomonas aeruginosa is presented. Gas sensors were used to acquire volatile compounds generated by P. aeruginosa on agar plates and meat stuffs. Then, optimal sensors were selected to simulate P. aeruginosa growth using modified Logistic and Gompertz equations by odor changes. The results showed that the responses of S8 or S10 yielded high coefficients of determination (R2) of 0.89-0.99 and low root mean square errors (RMSE) of 0.06-0.17 for P. aeruginosa growth, fitting the models on the agar plate. The responses of S9, S4 and the first principal component of 10 sensors fit well with the growth of P. aeruginosa inoculated in meat stored at 4 °C and 20 °C, with R2 of 0.73-0.96 and RMSE of 0.25-1.38. The correlation coefficients between the fitting models, as measured by electronic nose responses, and the colony counts of P. aeruginosa were high, ranging from 0.882 to 0.996 for both plate and meat samples. Also, gas chromatography-mass spectrometry results indicated the presence of specific volatiles of P. aeruginosa on agar plates. This work demonstrated an acceptable feasibility of using gas sensors-a rapid, easy and nondestructive method for predicting P. aeruginosa growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationship of cell surface hydrophobicity with biofilm formation and growth rate: A study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli

Objective(s): This study was designed to determine the relationship of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli isolates in multispecies biofilms and their individual phenotypic characters in biofilm consortia. Materials and Methods:  The subject isolates were recovered from different food samples and identified on the basis of growth on differential and selective med...

متن کامل

Synergistic Effect of Silver Nanoparticles and Streptomycin Antibiotic on the MexX Gene Expression of Pump Efflux System in Drug-Resistant Pseudomonas aeruginosa Strains

Introduction: Pseudomonas aeruginosa is one of the most important infectious agents in humans, which is difficult to control in hospitals due to its resistance to various antibiotics. Efflux pump systems play an important role in the drug resistance of this bacterium to a variety of antibiotics. This study aimed to determine the antimicrobial synergistic effect of silver nanoparticles and the a...

متن کامل

Abortive infection of Pseudomonas aeruginosa and Serratia marcescens with coliphage P1.

In the course of attempts to effect intergeneric transduction by means of coliphage P1 (Bertani, J. Bacteriol. 62:293, 1951; Lennox, Virology 1:190, 1955), we observed that this phage can attack and kill many strains of Pseudomonas aeruginosa and Serratia marcescens. Bacterial killing is not accompanied by phage multiplication. Lysates of phage Plkc or its mutant Plkc vir, grown on either Shige...

متن کامل

Antimicrobial Activity of Pyocyanin Produced by Pseudomonas aeruginosa Isolated from Surgical Wound-Infections

Five different isolates of Pseudomonas aeruginosa were obtained from surgical specimens and minced meat. The isolates were tested for the production of the blue pigment; pyocyanin. Considerable amounts of blue pigment were produced by P. aeruginosa isolates when grown on the four tested media. Müller-Hinton agar was further used for growth, pigment production and sensitivity tests. Pigment prod...

متن کامل

Determining Antibacterial Activity of 19 Medicinal Plant Extracts on Standard and Clinical Strains of Pseudomonas aeruginosa and Synergistic Activity of the Most Active Extract with Ceftazidime

Background: The emergence of multidrug-resistant (MDR) strains of P aeruginosa has become a serious concern today. This bacterium is resistant to a wide range of antimicrobial drugs. There are several ways to treat and control infections caused by MDR bacteria. One of these methods is to find active plant compounds with antimicrobial properties and antimicrobial combination of herbal plants ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016